FlashMath | calculus

derivatives

d/dx (xⁿ) =
nxⁿ⁻¹
d/dx (eˣ) =
d/dx (ln(x)) =
1/x
d/dx (sin(x)) =
cos(x)
d/dx (cos(x)) =
-sin(x)
d/dx (tan(x)) =
sec²(x)

integration

∫ xⁿ dx =
xⁿ⁺¹ / (n + 1) + C
∫ eˣ dx =
eˣ + C
∫ 1/x dx =
ln|x| + C
∫ sin(x) dx =
-cos(x) + C
∫ cos(x) dx =
sin(x) + C
∫ sec²(x) dx =
tan(x) + C

limits

lim x → 0 (sin(x)/x) =
1
lim x → 0 (1 - cos(x))/x² =
1/2
lim x → 0 (eˣ - 1)/x =
1
lim x → ∞ (1 + 1/x)ˣ =
e
lim x → 0+ ln(x) =
-∞
lim x → 0 (tan(x)/x) =
1

fundamental theorems

First Fundamental Theorem of Calculus =
F'(x) = f(x)
Rolle's Theorem =
f'(c) = 0
Second Fundamental Theorem of Calculus =
∫ [a, b] f(x) dx = F(b) - F(a)
Taylor Series =
f(x) = Σ (fⁿ(a)/n!) (x - a)ⁿ
Mean Value Theorem (MVT) =
f'(c) = [f(b) - f(a)]/(b - a)
L'Hôpital's Rule =
lim x→a f(x)/g(x) = f'(x)/g'(x)

test your knowledge!